
 Server Transformer Guide

Printing this Book
To print this book, use the Print command (File menu). For best results, it is recommended that printing be done on a postscript printer.

<HEAD>
<meta name="last-review" content="25-06-2001">
<meta name="title" content="Server Transformer Guide">
<meta name="product" content="powerplay transformer">
<meta name="version" content="6.0">
<meta name="prodversion" content="powerplay transformer-6.0">
<meta name="area" content="support">
<meta name="classification" content="documentation">
</HEAD>

While every attempt has been made to
ensure that the information in this document is
accurate and complete, some typographical
errors or technical inaccuracies may exist.
Cognos does not accept responsibility for
any kind of loss resulting from the use of
information contained in this document.

This page shows the publication date. The
information contained in this document is
subject to change without notice. Any
improvements or changes to either the
product or the document will be documented
in subsequent editions.

This text contains proprietary information
which is protected by copyright. All rights are
reserved. No part of this document may be
photocopied, reproduced, stored in a
retrieval system, transmitted in any form or by
any means, or translated into another
language without the prior written consent of
Cognos Incorporated.

U.S. Government Restricted Rights. The
software and accompanying materials are
provided with Restricted Rights. Use,
duplication for disclosure by the Government
is subject to the restrictions in subparagraph
(c)(1)(ii) of the Rights in Technical Data and
Computer Software clause at DFARS
252.227-7013, or subparagraphs (c) (1)
and (2) of the Commercial Computer
Software - Restricted Rights at
48CFR52.227-19, as applicable. The
Contractor is Cognos Corporation,
67 South Bedford Street,
Burlington, MA 01803-5164.

PowerPlay version 6.0

This edition published 1998
Copyright © 1998 Cognos Incorporated.

Portions Copyright © Microsoft Corporation,
One Microsoft Way, Redmond, Washington
98052-6399 USA. All rights reserved.

Portions Copyright © 1984-1996 Faircom
Rights Reserved.

Portions Copyright © 1986 by University of
Toronto. Written by Henry Spencer. Not
derived from licensed software.

Portions Copyright © Three D Graphics, Inc.

Cognos, the Cognos logo, the Cognos tag
line “Better Decisions Every Day,”Impromptu,
PowerPlay, PowerCube, Scenario,
4Thought, DataMerchant, PowerHouse,
RealObjects, COGNOSuite, and Cognos
Accelerator are trademarks of Cognos
Incorporated. All other trademarks mentioned
are the property of their respective owners.

Table of Contents

Welcome.. vii

Chapter 1: Overview of Server Transformer 9
Why Use Server Transformer?...9
Components of Server Transformer.....................................10

Communications ..10
Model Prototyping and Synchronization........................10
Server Menu Commands ...10
Server Configuration ...11
Run Server Transformer from the Command Line..............11

Server Transformer and Standard PowerCubes.....................11
Server Transformer and Relational Databases.......................11
Design Server Models and PowerCubes.............................13
The Client-Server Communications Process14

Chapter 2: Set Up Client-Server Transformer
Communications .. 17
PowerGrid..17

How PowerGrid Works ...18
Define a Client-Server Connection19

Add a Connection Using NetInfo19
Test a Connection Using NetInfo20

Server Transformer Shell Scripts ...21

Chapter 3: Create Server Models and PowerCubes .. 23
Use Server Transformer on a Remote Computer23
Prototype a Model ...24
Set Up Queries for the Prototype24

Use Supported Data Sources for Server Models25
Use Impromptu to Set Up Queries................................25
Server Transformer Guide iii

Change Settings to Build Server Models and Create Server
PowerCubes..26
Enter Server Information ...28
Provide Server Query Definitions28
Change the PowerCube Definition to Server29
Create a Server Model..29
Generate Categories on the Server..............................30
Create Server PowerCubes ..30
Multiprocessing..31

Synchronize Models ...31
Why is Synchronization Required?...............................31
Automatic Synchronization ...32
Manual Synchronization ..32
Restore Model Files...32
Automate Model Synchronization33

Chapter 4: Manage the Server Transformer
Environment... 35
Control Server Transformer with Preferences and

Environment Variables..35
Where rsserver Obtains Settings36
How rsserver Uses Settings...36
Rules for Preference File Entries..37
Preference Settings ...38

Directory...39
File ..40
Rules for Environment Variables Entries40
Log File ..41
Warning...42
Output..43
Available Memory..43
Query Attributes ...44
Communication..44
Date Format ..45

Environment Variables ...46
PowerPlay Administrator Server Environment Variables46
RDBMS Environment Variables47
Shared Library Environment Variables49
Use Client-Server Transformer with Relational Databases ..49

Chapter 5: Run Server Transformer from the
Command Line ... 51
Run rsserver from the Command Line51
Syntax for rsserver ..52
Command-line Options List ...52
Use the Command-line Options...53
iv Server Transformer Guide

Examples..58
Save Changes to a Model File58
Generate Categories and Create PowerCubes58
Choose a Preference File ...58
Override Preference File Settings59
Create a Test PowerCube from a Subset of Records59
Combine Options...59

Chapter 6: Production and Maintenance.................. 61
Manage Production in a Client-Server Environment61
Client-Server Production Issues ..62
Schedule Server Production ..63
Incremental Updates ...63

Sample PowerCube Creation Job63
Sample MDL Model Update.......................................65

Use Client Transformer to Check rsserver Status65
Check Job Completion ..66
Use the Log File ...66
Check PowerCube Status ..67
Restart a Failed Process from a Checkpoint68
Restart a Failed Process from the Beginning68

Appendix A: Configuration Checklist for a
Client-Server Environment.................................. 69
Set Up a Client-Server Environment69
Install PowerPlay ..69
Prepare Client Transformer ...70
Prepare Server Transformer...71

Index.. 73
Server Transformer Guide v

 Welcome
Welcome
The PowerPlay Server Transformer Guide contains the information you
need to use the Administrator Server edition:

• a description of Transformer in a client-server environment

• an explanation of how to set up client-server communications

• the procedure for creating server models and PowerCubes

• information about managing the server Transformer environment
with user preference files and environment variables

• details about how to run server Transformer from the command line

• guidelines for production and maintenance

This chapter includes

• Who This Book is For

• Other Documentation

• Your Comments are Welcome

Who This Book is For

To use this book effectively you should know

• how to design and build a PowerPlay system

• the UNIX operating system

Other Documentation

A list of the PowerPlay documentation, the PowerPlay Documentation
Roadmap, is available from the Windows Start menu or the PowerPlay
Help menu.

Your Comments are Welcome

We are interested in your comments or questions about the
documentation. Please send email to: bipubs@cognos.com.
Server Transformer Guide vii

1
Chapter 1: Overview of Server
Transformer

This chapter provides an overview of how Transformer works in a
client-server environment.

The topics covered are

✔ Why Use Server Transformer

✔ Components of Server Transformer

✔ Server Transformer and Standard PowerCubes

✔ Server Transformer and Relational Databases

✔ Design Server Models and PowerCubes
✔ The Client-Server Communications Process

Why Use Server Transformer?
Server Transformer offers additional capabilities to those available with
Client Transformer, including

• the ability to handle large data sources. The server can easily process
large volumes of data without transferring the data for local
processing.

• easier integration of PowerCube builds and data warehouse updates.
It is easier to integrate these processes if they both run under the
same operating system.

• increased performance. Depending on the size of the server, server
Transformer may be able to generate models and cubes faster than
local processing on a computer.

• scheduled cube creation. Using scheduling utilities such as cron, you
can automate server cube creation so that it is performed during off-
peak periods.
Server Transformer Guide 9

Chapter 1: Overview of Server Transformer
• production support. The models and PowerCubes created on the
server are subject to automated backup and recovery procedures
already in place for the server.

• faster processing. If the server is closer to the data, as in the case of
data stored in a database, processing performance improves.

Components of Server Transformer
The Administrator Server Edition of PowerPlay includes components
such as communications, model prototyping and synchronization, server
menu commands, and configuration, which are available exclusively
with this edition. You can also run server Transformer from the
command line.

Communications
Client Transformer communicates with server Transformer via
PowerGrid, a utility that is included with the Administrator Server
Edition. The PowerGrid network daemon (netd) must be installed,
configured, and running on the computer where server Transformer
listens for requests from Client Transformer. All communications from
Client Transformer to PowerGrid must be made using a Windows
Sockets compliant TCP/IP connection.

For information about client-server communications, see "Define a
Client-Server Connection" on page 19.

Model Prototyping and Synchronization
Each server model can be derived from a local model you create using
Client Transformer. Each local model is associated with one server
version of the same model. The two versions of Transformer (Client and
server) ensure that these models remain synchronized with one another.

For information about model prototyping, see the section "Prototype a
Model" on page 24. For information about synchronization, see
"Synchronize Models" on page 31.

Server Menu Commands
Many of the actions you can perform locally using Client Transformer,
such as generating categories and creating PowerCubes, you can also
perform on the server using server Transformer. The Server menu in
Client Transformer contains commands for setting up client-server
connections and for creating models and PowerCubes on the server.

For information about these commands, see "Define a Client-Server
Connection" on page 19 and "Change Settings to Build Server Models
and Create Server PowerCubes" on page 26.
10 Server Transformer Guide

Chapter 1: Overview of Server Transformer
Server Configuration
Various server preference settings control how server Transformer runs.

For information about the server environment configuration, see
Chapter 4 on page 35.

Run Server Transformer from the Command Line
You can run server Transformer from the command line (independent of
Client Transformer).

For information about the command line syntax, see Chapter 5 on
page 51.

Server Transformer and Standard
PowerCubes

You can use server Transformer to create standard PowerCubes that are
binary compatible with the ones you create in the Windows
environment. Once they are created, you can download them to a
Windows-based LAN environment or let users access them directly from
the server via a file-access facility such as NFS or Samba.

For more information, consult your UNIX administrator.

Server Transformer and Relational Databases
You can use relational databases on the server to store PowerCubes.

Before you can store PowerCubes in a relational database, you must
create the database tables required to hold the PowerCubes. Both the
Administrator Database and Administrator Server editions of PowerPlay
include Data Definition Language scripts that enable you to create the
database structures Transformer requires to store PowerCubes.

For information about scripts, see the Transformer online Help.

The databases in which you can store PowerCubes include the following:

• Oracle 7.3, 8.0 (accessed via SQL*Net)

• Sybase SQL Server 11 (accessed via CT-Lib)

• Sybase Adaptive Server 11.5

• Informix (Online) Dynamic Server 6.0, 6.5

• DB2 Common Server 2.1

• DB2 Universal Database 5.0

• Microsoft SQL Server 6.0, 6.5
Server Transformer Guide 11

Chapter 1: Overview of Server Transformer
Note: To be able to use a database, its entry in the Cognos.ini file must
not be set to 0. Check the following section in the Cognos.ini file and
remove the 0 as necessary:
[PowerPlay Server List]
Oracle=
Sybase=
MS SQL Server=
Informix=

Your list may contain other entries, depending on the version of
PowerPlay you are using.

The physical location of the database where the PowerCube is stored is
irrelevant to server Transformer. In general, any database that can be
accessed through your database connectivity software (for example,
Oracle SQL*Net) can serve as a storage device for PowerCubes. For
example, if server Transformer is installed on an HP-UX computer on
which SQL*Net is installed, server Transformer can create PowerCubes in
an Oracle instance on an OpenVMS computer.

Note: This assumes that there is an entry in Tnsnames.ora that enables
SQL*Net to access the database on the OpenVMS computer.

The same is true for Impromptu Query Definition (.iqd) data sources
accessed by server Transformer—any database that is accessible via your
database connectivity software is one that server Transformer can access
using .iqd files. For example, if SQL*Net on an IBM AIX computer can
access a DB2/400 database (via Oracle’s Transparent Gateway) on AS/
400, server Transformer can access information from that DB2/400
database.

For information about storing PowerCubes in relational databases, see
the PowerPlay Administrator’s Guide.
12 Server Transformer Guide

Chapter 1: Overview of Server Transformer
Design Server Models and PowerCubes
The development of a server model and associated PowerCubes
typically begins locally. Using Client Transformer and local queries that
are structurally identical to the ones you will use for your server model,
you build and test a prototype model and create PowerCubes.

Once you have determined that the local model and PowerCubes are
appropriate, you define a server query in the model and store the model
on the server. With a server model in place, you can start server
Transformer (rsserver) from Client Transformer or from the command
line to generate categories for the server model and create PowerCubes
using server data sources.

Test the server models and PowerCubes to verify that they are providing
the required information. Once this is complete, you can set up a regular
production environment for the ongoing creation of PowerCubes and
their deployment to users. The following diagram shows the model
design and PowerCube creation process.

Design and create prototype
model locally on PC.

Create and test PowerCubes
locally.

Production and maintenance.

Define a server query in the
model and use Client-server
Transformer to load the model to
the server.

Create and test server
PowerCubes.
Server Transformer Guide 13

Chapter 1: Overview of Server Transformer
The Client-Server Communications Process
The following diagram illustrates the client-server communications
process for Transformer.

When you use the Server menu to issue commands from Client
Transformer to server Transformer, Client and server Transformer
communicate according to the following process:

1. Using a Windows Sockets compliant TCP/IP connection, Client
Transformer passes the request to the network daemon (netd), the
PowerGrid network daemon.

2. The network daemon receives the request, starts server Transformer
(rsserver), and connects it to Client Transformer. After that, Client
Transformer and rsserver communicate directly with each other via
TCP/IP and library routines. The rsserver program gets information
in the form of Model Definition Language (MDL) verb statements
from Client Transformer. The rsserver program uses settings defined
in the environment where PowerGrid was started and searches for
the Transformer preferences files (trnsfrmr.rc and .trnsfrmr.rc) that
provide additional operational settings.

3. Once started, server Transformer carries out the requests, such as
generating categories for a model or creating PowerCubes, on the
server.

Server

Transformer on PC (for
PowerCube Prototyping)

Windows Sockets
compliant TCP/IP

connection

PowerGrid
network

daemon (netd)

rsserverServer
Models

Server
PowerCubes

PowerPlay

PowerPlay

NFS-mounted disk (for Standard
PowerCubes) or vendor-supplied

connectivity software (for PowerCubes
in relational databases)

1

2

3

PowerPlay

Remote
Server

Communications
(SQL*Net)

Server
Data

Source

Server
Data

Source

RDBMS
14 Server Transformer Guide

Chapter 1: Overview of Server Transformer
An important part of this communication process is synchronization.

For information about synchronization, see "Synchronize Models" on
page 31.

Once the server has completed a request, it remains running for a pre-
set period of time, awaiting other requests. The netd remains available
indefinitely to handle new requests.
Server Transformer Guide 15

2
Chapter 2: Set Up Client-Server
Transformer Communications

This chapter describes communications between Client Transformer and
server Transformer.

The topics covered are

✔ PowerGrid
✔ Define a Client-Server Connection
✔ Server Transformer Shell Scripts

PowerGrid
When you issue commands from Client Transformer to server
Transformer, these commands are transmitted by PowerGrid. PowerGrid
is a dedicated utility that is installed on the server along with server
Transformer. The role of this utility is to provide a Windows interface to
server Transformer, which enables you to control server Transformer
from within Client Transformer. The PowerGrid network daemon (netd)
listens for requests from Client Transformer to initiate a server
Transformer task.

For information about setting up server Transformer and PowerGrid, see
the Administrator Server Installation Guide.

While you would normally use PowerGrid to start server Transformer,
you can directly logon to UNIX and issue commands to server
Transformer.

For information about how to issue commands to server Transformer,
see Chapter 5 on page 51.
Server Transformer Guide 17

Chapter 2: Set Up Client-Server Transformer Communications
Before you can create server models and PowerCubes, you must ensure
that

• both PowerGrid netd and server Transformer are installed and
configured on the computer where you will be creating server
PowerCubes.

• a local connection is defined on the computer for the server where
netd and server Transformer are installed.

For information about how to define a connection, see "Define a
Client-Server Connection" on page 19.

• the server environment is set up so that server Transformer creates
models and PowerCubes where and how you want them created.

For information about the server environment, see "Manage the
Server Transformer Environment" on page 35.

For information about the steps to configure a client-server environment,
see Appendix A on page 69.

How PowerGrid Works
Following is a description of how PowerGrid sets up communications
between Client Transformer and server Transformer:

1. PowerGrid netd is running on the server, listening for messages on
the port that was selected at installation time. The default is 1526.

2. From Client Transformer, you issue a server command, for example,
from the Server menu, Maintenance submenu, Restore Server Model
from Client.

This sends a message to the port to run the rsserver.sh script. The
default location of this script is pya60#\bin.

Note: # is the build number and can be up to three digits (for
example, 113).

For information about the rsserver.sh script, see "Server Transformer
Shell Scripts" on page 21.

3. PowerGrid hears the message and runs rsserver.sh, passing the
Client Transformer address to the shell script.

4. The rsserver.sh script starts rsserver, the server Transformer
executable.

5. Server Transformer sends a confirmation message to Client
Transformer informing it that it has run the script.

For the remainder of the session, Client Transformer communicates
directly with server Transformer, without using PowerGrid.
18 Server Transformer Guide

Chapter 2: Set Up Client-Server Transformer Communications
Define a Client-Server Connection
You can create and modify connection definitions by using

• the Maintenance submenu of the Server menu in Client Transformer

• the Server tab in the Model property sheet (from the File menu, click
Model Properties) in Client Transformer

• the NetInfo utility, which is described in the following sections

For information about defining connections on the server, see the
Transformer online Help.

The commands on the Maintenance submenu are not available until you
have actually created a new model. Before you attempt to communicate
with server Transformer, it is good practice to use NetInfo to test any
connections that you have defined.

Add a Connection Using NetInfo
NetInfo is a utility that enables you to add and test connections to
PowerGrid on the server.

Steps to Create a Connection

1. From the installation directory, start NetInfo.

2. From the File menu, click Edit Connections.

3. Click New to add a new connection.

4. In the Network Type box, click Windows Sockets TCP/IP.

The entries shown depend on what is defined in your Cognos.ini
file. By default, Cognos.ini contains an entry for Windows Sockets.
However, it may contain additional entries if you are using other
Cognos products.

5. In the Host Name box, click or type the name of the server on
which PowerGrid and server Transformer are installed.

If NetInfo is able to find a Hosts file, it will provide you with a list of
host names from that file. If no Hosts file is found, you must type
the name or the IP address of the server on which PowerGrid and
server Transformer are installed. If you don’t know the name of the
server, contact your network administrator.

6. In the Host Type box, click UNIX.
Server Transformer Guide 19

Chapter 2: Set Up Client-Server Transformer Communications
7. In the User Name box, type your login ID for the computer specified
in the Host Name box.

Transformer uses this ID when connecting to the server.

Note: Under certain circumstances, you must click the Setup button
to change the local configuration for the connection you are
creating. If the network port ID was not set to 1526 when
PowerGrid was installed, you must change your local port setting to
match the network port ID. If it was set to 1526, you can skip steps
8 to 10 and proceed to step 11.

8. Click Setup.

9. Click Use Specific Port for This Connection, and type a number for
the network port.

Your local port ID must match the network port. In the following
example, the services file on the server where PowerGrid is running
shows the value 3125. Therefore, you would enter 3125 in the Use
Specific Port for This Connection box.
#COGNOS PowerGrid Services
powergrid 3125/tcp

10. Click OK, and click Save.

11. In the Connection to be Saved box, type a name for your
connection, click OK, and then click Done.

Test a Connection Using NetInfo
Once you have defined a connection, and before you issue a command
to server Transformer for the first time, use NetInfo to test the
connection. Using NetInfo is similar to using a ping utility when testing
network connections; it verifies that messages are being sent to netd,
and that netd is responding to them.

Steps to Test a Connection

1. From the installation directory, start NetInfo.

2. From the Network menu, click Test Connection.

3. In the Connection Name box, double-click the name of the
connection you want to test.

NetInfo sends a test packet to netd via PowerGrid.

If the connection is working correctly, NetInfo shows a message that
looks like this:
Network: Microsoft Windows Sockets Version 1.1.
The current address is ‘[142.80.66.251#0]’
---- Test ‘1’ ----
Reply received from NETD owned by ‘root’ [PID=’818’]
20 Server Transformer Guide

Chapter 2: Set Up Client-Server Transformer Communications
If the connection is not working, verify that

• netd is running on the server

• the port number defined for your connection matches the one
defined on the server

Server Transformer Shell Scripts
When PowerGrid starts server Transformer, it does so using an entry in
the Cognos.ini file. The entry looks like this:
[Service - Transformer Server]
NETWORK=rsserver.sh

PowerGrid netd uses the shell script rsserver.sh to start server
Transformer when a request is issued from Client Transformer. Before
you attempt to use server Transformer, ensure that the Transformer
server service is defined in your Cognos.ini file and that the shell script
is in the search path when starting netd on the server. You can also edit
your rsserver.sh file to set up environment variables, which server
Transformer uses to generate models and create PowerCubes.

For information about environment variables, see "Environment
Variables" on page 46.
Server Transformer Guide 21

3
Chapter 3: Create Server Models
and PowerCubes

This chapter describes how to use Client Transformer to set up prototype
models for server Transformer. In addition, it describes how to start rsserver
from Client Transformer to create models and PowerCubes on the server.

The topics covered are

✔ Use Server Transformer on a Remote Computer
✔ Prototype a Model

✔ Set Up Queries for the Prototype

✔ Change Settings to Build Server Models and Create Server PowerCubes

✔ Synchronize Models

Use Server Transformer on a Remote
Computer

To use Client Transformer to control server Transformer on a remote
computer, you must

• set up a connection to the server.

For information about setting up a connection, see "Define a Client-
Server Connection" on page 19.

• configure the server environment before you can communicate with
server Transformer and create server models and PowerCubes.

For information about configuring the server environment, see
Chapter 4 on page 35.
Server Transformer Guide 23

Chapter 3: Create Server Models and PowerCubes
Prototype a Model
Server models often start with a prototype model that you create using
Client Transformer. Once the prototype model is developed to your
satisfaction, use server Transformer to create the server version of the
model. Each server model is associated with one client model.

The process of prototyping a client-server model is similar to creating
any other model. The difference is how you set up the appropriate data
sources for the local prototype.

Set Up Queries for the Prototype
Models you create using server Transformer must read data sources from
the server where server Transformer is running. Because server
Transformer is intended for large cube production, it is likely that these
data sources contain large volumes of data. When you prototype a
server model on the client, you will need to set up queries that provide
access to a sufficient subset of the source data to enable you to design
your model. You can use any source data type supported by
Transformer when creating your prototype model.

The queries you use to build the prototype must adhere to the following
rules:

• They must have the same columns as those you intend to use later
for server Transformer.

• The names of columns used to define levels and measures in the
models must match.

• The columns can be in any order and may be unused.

• There may be fewer categories in each column of the local query
than in the server query. If this is the case, data records found in the
server query, which were not found in the local queries, will provide
new categories for the server model.
24 Server Transformer Guide

Chapter 3: Create Server Models and PowerCubes
Use Supported Data Sources for Server Models
Server Transformer uses the following source data types:

• Impromptu Query Definition (.iqd) files

• Delimited-field text (with or without column titles)

• Fixed-field text or fixed-field and record without CR LF

• Cognos PowerHouse Subfiles

If you use data sources other than Impromptu .iqd files, you must set up
separate physical sources locally on the computer, for your prototyping,
and on the server.

Notes:
• In Client Transformer, when you are defining a query that will be

used by server Transformer, the only valid source data types are those
listed above.

• If PowerPlay and Impromptu were installed in different directories
and you use .iqd files that support User-Defined Functions (UDF),
you must copy the files associated with the UDF to the PowerPlay
directory.

For more information about these files, see the Impromptu online
book How to Create User-Defined Functions.

Use Impromptu to Set Up Queries
The easiest way to set up a local query for your prototype model is to use
Impromptu. You can set up an .iqd file that returns a subset of the data
you want to use in the model. Impromptu enables you to filter data in
many ways. You can

• filter by value on specific columns. For example, you could include
data for only a few of your regions when generating categories for
the Regions dimension in the model.

• return a specific number of rows. For example, if the server source
data contains two million records, you might want to return only the
first 10,000 of them to use for model prototyping.

• return only unique records if the server source data contains a lot of
duplicate records

When you use an .iqd file to prototype your model, Client Transformer
incorporates the contents of the .iqd file into the model. Later, when you
have server Transformer generate categories and create PowerCubes, it
will access the same database that you used to build the prototype.
Server Transformer Guide 25

Chapter 3: Create Server Models and PowerCubes
Steps to Build Prototype and Server Queries

1. In Impromptu, create an .iqd file that returns sufficient data to build
a prototype model.

2. In Client Transformer, design and build the prototype.

3. Use Impromptu to remove any limits or filters that you applied to
restrict data when you defined the original .iqd file, and re-save the
file.

4. In Client Transformer, use the Modify Columns command to match
the columns in the model with those in the new .iqd file, and to
load new columns into the model.

5. In Client Transformer, on the Query property sheet, change the
Query Location to Server.

Example

In a sales analysis model, there are Impromptu reports defined for
Products, Regions, and Sales Transactions. Within Impromptu, you set
the limit for row retrieval to a relatively small value (500 rows, for
example). You then save these reports in .iqd format, and use Client
Transformer to read them and define the model structure. Then, using
Impromptu, you remove the 500 row restriction from each report and
save the .iqd files again. Within Client Transformer, you change each
query to a server query. You can then generate server categories and
create server PowerCubes using the .iqd files with no restrictions set on
data retrieval.

Change Settings to Build Server Models and
Create Server PowerCubes

By default, Transformer assumes that models are being created for local
processing. As a result, none of the Server menu commands for server
model and PowerCube creation are available until you change some
model settings. These settings define

• how Client Transformer communicates with server Transformer

• how and where server Transformer builds the server model and
creates PowerCubes

For information about the steps involved in configuring a client-server
environment, see Appendix A on page 69.
26 Server Transformer Guide

Chapter 3: Create Server Models and PowerCubes
Steps to enable the commands in the Server menu and to send
requests from Client Transformer to server Transformer

1. Enter server information so that Client Transformer can connect to
the server and the server knows where to create the server model
file.

2. Provide server query definitions so the server can access data from
sources on the server.

3. Provide server PowerCube definitions so that category generation
and PowerCube creation occurs on the server.

Once you have made these changes, the commands in the Server menu
are available for use.

If you are using the server to create PowerCubes in a relational database
and you have been prototyping locally using standard PowerCubes, you
must change the Database Type setting in the PowerCube property sheet
for each PowerCube you want the server to create. This enables the
server to write PowerCube data to the relational database.

Note: If the Database Type box does not show the database you need,
check the following section in the Cognos.ini file. If your database entry
is set to 0, remove the 0:
[PowerPlay Server List]
Oracle=
Sybase=
MS SQL Server=
Informix=

Your list may contain other entries, depending on the version of
PowerPlay you are using.

On the server, you can use parameters for server Transformer that
control the default location for server PowerCube files.

For information about how to control the server environment, see
Chapter 4 on page 35.

Note: When you are prototyping models for PowerCubes that you will
store in a relational database, we recommend you first locally create the
models and PowerCubes. This way, you can test the cubes without
having to set up the relational database environment for them. Later, you
can change the PowerCube Database Type property to create your
production cubes in a relational database.
Server Transformer Guide 27

Chapter 3: Create Server Models and PowerCubes
Enter Server Information

Steps to enter server information

1. From the File menu, click Model Properties, and then click the
Server tab.

2. In the Model Path box, type the file name you want server
Transformer to use when creating the server model file.

You can include a server directory name.

3. Use the Connections box and, optionally, the Connections button, to
specify the name of a connection you have set up to communicate
with server Transformer.

Provide Server Query Definitions
Server Transformer can process only server queries. By changing the
location of your queries from Local to Server, you identify a location
where server Transformer can access the server data required to build
the server model and create server PowerCubes.

Steps to change the query location from local to server

1. In Client Transformer, in the Queries window, double-click the
query that will become the server query to open the Query property
sheet, and then click the Source tab.

2. Set the Query Location to Server.

3. If the Source Type is not Impromptu Query Definition, in the Server
Data File box, type the name of a source data file that server
Transformer can use for the model.

4. Repeat steps 1 to 3 for each query used to create the server model.

Ensure that, for each local source data file, there is an equivalent
data file available on the server.

Note: If you are generating PowerCubes, the file settings (local or
server) for your queries must match the file settings for your
PowerCubes (processed locally or on the server). You can use local data
sources to generate PowerCubes locally. If you are creating models and
PowerCubes using the server, the Queries list must contain at least one
server transaction query that is processed on the server. You can
generate a model structure either on the client or the server, since model
information is synchronized between the client and server.
28 Server Transformer Guide

Chapter 3: Create Server Models and PowerCubes
Change the PowerCube Definition to Server
By providing a server PowerCube definition in Client Transformer, you
specify that category generation and PowerCube creation are done by
server Transformer.

 Steps to change the PowerCube definition to server

1. Open the PowerCube property sheet, and click the Processing tab.

2. Change the Processed location to On the Server.

3. Click the Output tab and type the PowerCube file name.

4. Repeat steps 1 to 3 for each cube you want server Transformer to
process.

Create a Server Model
Once you have defined all the settings required for a server model
(using the Model property sheet), you can create a server model.

Once you have created a server model, it has a permanent association
with the local model from which it was created. Transformer ensures
that the local and server versions of the model always contain the same
information.

For information about synchronizing models, see "Synchronize Models"
on page 31.

Note: To copy your client model to the server using an FTP program,
save the model in ASCII (.mdl) format rather than binary (.py?) format.
You can’t use an FTP program with a .py? file because the Windows and
server environments are not binary compatible. (The ? in .py? is replaced
by the character used in your version of Transformer.)

Step to create a server model
■ From the Maintenance submenu of the Server menu, click Restore

Server Model from Client.

Transformer sends the information contained in the local model to
the server, where server Transformer processes and stores the model
as a server model.

Tip: To have server Transformer create PowerCubes, you can use the
Create Server PowerCubes command.
Server Transformer Guide 29

Chapter 3: Create Server Models and PowerCubes
Note: Although we recommend that you use the commands in the Server
menu to create server models, you can also use other methods. You can

• save the model as a Model Definition Language (.mdl) file and copy
that file to the server. You can then run server Transformer from the
command line to process the .mdl file and create a model.

• create the model on the server using MDL verb statements, either
manually (this is not recommended) or using a third party tool that
generates MDL.

Generate Categories on the Server
In the Server menu, there are two commands you can use to generate
server categories:

• Generate Server Categories, which uses all server queries to generate
server categories

• Generate Categories from Selected Server Query, which uses only the
selected server query to generate server categories

Both commands cause PowerGrid to start a server Transformer task, or
connect to an active server Transformer task, which uses the defined
server queries to generate categories on the server. As part of server
category generation, Transformer synchronizes the local model with the
server model. As a result, when you generate server categories, new
categories are reflected in your model diagrams.

Create Server PowerCubes
Once you have created a server model and generated categories for that
model using server queries, you can use server Transformer to create the
PowerCubes associated with that model.

In the Server menu, there are two commands you can use to create server
PowerCubes:

• Create Server PowerCubes, which creates all the server PowerCubes
defined in the PowerCubes list

• Create Selected Server PowerCube, which creates only the selected
PowerCube

Both commands cause PowerGrid to start a server Transformer task or
connect to an active server Transformer task, which creates PowerCubes
on the server.
30 Server Transformer Guide

Chapter 3: Create Server Models and PowerCubes
Multiprocessing
If the model setting for multiprocessing is enabled, rsserver starts a
process called rsserverda, which handles the read phase of column
calculation, category generation, and cube creation. These records are
then passed to server Transformer for processing. The rsserverda
program closes automatically once it has read a query. A separate
instance of rsserverda is started for each query that uses multiprocessing.
If server Transformer does not complete successfully or rsserverda does
not close automatically, use the kill command to close rsserverda.

The MDL setting that enables multiprocessing is MultiProcessing True,
which should appear in the statement that defines a query (usually the
QueryMake statement).

Synchronize Models
Within a client-server implementation, every server model has a one-to-
one relationship with a client model. This means that only one client
version of a model can be associated with only one server version of
that model. Transformer doesn’t allow two or more users to work
simultaneously on a server model using different versions of the
associated client model.

Within each model created both locally and on the server, Transformer
maintains internal numeric identifiers—cycle numbers and timestamps—
that identify a client model and a server model. Transformer uses these
identifiers to synchronize the contents of the client and server models
that you create.

Why is Synchronization Required?
Synchronization enables Client Transformer to keep in step with server
Transformer so you can use Client Transformer’s user interface to
maintain your models. Synchronization prevents model versions from
diverging when either the client or server model changes.

When production runs are completed on the server, synchronization
ensures that new categories added from server data sources are
incorporated into the client model. Once this is complete, you can make
changes to the model using the Client Transformer interface.
Server Transformer Guide 31

Chapter 3: Create Server Models and PowerCubes
Automatic Synchronization
When you choose a command from the Server menu, Client Transformer
automatically synchronizes the corresponding model at the start and end
of the command. Synchronization involves

• sending changes made in the client model to the server model and
incorporating them there

• sending changes made in the server model back to the client model
and incorporating them there

If both the client and server model have been changed independently,
the changes made to the client model have precedence.

Manual Synchronization
If a server model is updated independently of Client Transformer, the
client model becomes outdated. This can happen, for example, when
you run an MDL script on the server to update a model and the script
causes new categories to be added to the server model.

To keep client and server models synchronized, you need to open the
model in Client Transformer and manually initiate synchronization.
Before you change a client model, you should synchronize it, so that
any changes made to the server model are reflected in the client. This
ensures that the client model is current.

Step to Synchronize Models Manually
■ From the Server menu, click Synchronize.

Restore Model Files
When the client and server models both exist but cannot be
synchronized, Transformer shows the following message:
The client and server models are not synchronized.

This can occur, for example, when you have generated categories for the
server model and either forgotten to save, or decided not to save, the
client copy of the model. Synchronization fails because Transformer
detects inconsistencies in the internal synchronization stamps.

When this happens, you can use the commands in the Maintenance
submenu of the Server menu to update the client model with the server
model or to update the server model with the client model, whichever is
most suitable. If changes were made on the server (as a result of a
production run that has processed new data, for example), you would
update the client model based on the server model. Conversely, if you
have made changes locally, you would update the server model from
the client.
32 Server Transformer Guide

Chapter 3: Create Server Models and PowerCubes
Example

You create a client model using Client Transformer and a server model
from the client using the Restore Server Model from Client command.
Later, without Client Transformer running, you use the rsserver
command to create a server-based PowerCube. If the server data source
includes records for which no categories exist in the model, server
Transformer creates new categories.

The server model is now updated and the client model is out of date.
The next time you start Client Transformer, open the client model, and
connect to server Transformer, Transformer compares the file contents
and time stamps. Since they do not match, Transformer copies the new
categories from the server model to the client model.

Automate Model Synchronization
Below is a sample MDL script that saves the model on the client after
synchronizing the client and server models and creating the cubes
Training, Skills Inventory, and Staff Growth:
Openmdl “model.mdl”
CreateFromCubes OnServer “Training” “Skills Inventory” “Staff
Growth”
Savemdl “model.mdl”
Server Transformer Guide 33

4
Chapter 4: Manage the Server
Transformer Environment

This chapter describes the overall management of the server Transformer
(rsserver) environment and gives details of the settings for the user preference
files and environment variables.

The topics covered are

✔ Control Server Transformer with Preferences and Environment Variables

✔ Where rsserver Obtains Settings
✔ How rsserver Uses Settings
✔ Rules for Preference File Entries
✔ Preference Settings
✔ Environment Variables

Control Server Transformer with Preferences
and Environment Variables

When rsserver is called from Client Transformer or from the command
line, it populates models and creates PowerCubes, writes messages to a
log file, and performs other Transformer actions. How and where these
actions are performed is determined by preferences and environment
settings that you provide.

You can

• create user preference files on the host system, which control the
operating characteristics of rsserver when it is started from Client
Transformer or from the command line.

• set up UNIX environment variables.

• override a specific setting by specifying a command-line option when
invoking rsserver.
Server Transformer Guide 35

Chapter 4: Manage the Server Transformer Environment
Where rsserver Obtains Settings
The rsserver program searches for settings in the order shown here:

1. trnsfrmr.rc in the rsserver program directory

2. .trnsfrmr.rc in the current working directory

3. .trnsfrmr.rc in the user’s home directory

4. environment variables

5. the -D or -F command-line switches when running rsserver

Note: If the command line contains both -D and -F, rsserver uses the
one that appears last.

The settings contain information such as default directories for various
classes of files that rsserver uses or creates, timeout values, and
communication variables.

How rsserver Uses Settings
All preference file settings can be used as environment variables. You
can use multiple preference files. The rsserver program reads all the
preference files it finds. However, it is important to note that settings in
each successive location override settings in previous locations. This
means that settings in .trnsfrmr.rc in the home directory override settings
in both .trnsfrmr.rc in the current working directory and trnsfrmr.rc in
the program directory. Environment variable settings override settings in
any preference file, and command-line options override environment
variable settings.

Example 1

To use an environment variable to override the directory where rsserver
reads source data files, include an environment variable definition such
as the following in the rsserver.sh file:
DataSourceDirectory=mydatadir; export mydatadir

Example 2

To use the command line to override the setting for the directory where
rsserver reads source data files, start rsserver as follows:
rsserver -D DataSourceDirectory=mydatadir
36 Server Transformer Guide

Chapter 4: Manage the Server Transformer Environment
Rules for Preference File Entries
When reading a setting from a preference file, rsserver observes these
rules:

• Entries are not case-sensitive.

Note: Environment variables are case-sensitive.

• Blank characters, tab characters, and lines beginning with the pound
sign (#) are ignored.

• In most cases, rsserver ignores a line if an invalid command-line
switch is specified and provides usage instructions. However, if you
specify invalid values, such as the name of a file that does not exist,
rsserver may write errors to the log file. For example, this will happen
if the entry for ModelSaveDirectory is incorrect, but if the entry for
CubeSaveDirectory is wrong, the variable will be ignored and no
entry will be made to the log file.

• If the setting for any of the following preferences is changed to a
value that is outside the acceptable range, the invalid setting is
changed at runtime. Either the maximum or minimum value is used,
depending on which value is closest to the setting you specified.

• ServerWaitTimeOut

• ServerWaitPeriods

• ServerAnimateTimeOut

• ServerSyncTimeOut

• ChildRatioThreshold
Server Transformer Guide 37

Chapter 4: Manage the Server Transformer Environment
Preference Settings
This section describes the preferences you can set for rsserver. The
settings are grouped into the following categories. Each preference
category is described after the table:

Note: In the following lists of preferences, <path> refers to the directory
and file name.

Preferences Category Description

Directory Controls the locations where rsserver reads
data and writes results.

File Controls how many open files are permitted
and whether variable names can be used
when specifying file names.

Log File Controls where and how rsserver writes
information to the log file

Warning Controls whether rsserver issues warnings
about potential incremental update problems
and ratios between categories and their
descendants.

Output Controls how often rsserver creates
checkpoints for recovery from severe errors
during PowerCube creation.

Available Memory Controls how much memory is available to
rsserver when creating PowerCubes.

Query Attributes Describes the physical attributes of source
data files, such as the character used for a
decimal point.

Communication Controls properties relating to
communications between Client Transformer
and server Transformer.

Date Format Controls the format in which the date is
displayed.
38 Server Transformer Guide

Chapter 4: Manage the Server Transformer Environment
Directory

ModelWorkDirectory=<path>

Specifies where rsserver can create a temporary file while you work on
your model. The temporary file can be used to recover a suspended
model at strategic checkpoints, should a severe error occur during
PowerCube creation. This file has the extension .qy?. (The ? is replaced
by the character that is used in your version of Transformer.)

The default path is the value of ModelSaveDirectory.

DataWorkDirectory=<path1;path2;...>

Specifies where Transformer creates temporary work files while
generating PowerCubes. It will create multiple files automatically. The
location of those files is determined by the list of paths that you specify.
The files are created in the order specified in the list of paths.

The default path is the value of CubeSaveDirectory.

Notes
• Distributing files across multiple disk drives can improve

performance by reducing disk contention.

• The environment variables TMPDIR, TEMP, and TMP can also
determine where Transformer creates temporary files. Transformer
uses the first environment variable that is defined.

DataSourceDirectory=<path>

For data source files other than .iqd files, specifies where rsserver
searches for the files.

The default path is the current working directory.

CubeSaveDirectory=<path>

Specifies where rsserver saves PowerCubes.

The default path is ModelSaveDirectory.

ModelSaveDirectory=<path>

Specifies where rsserver saves models.

If you are running the rsserver command with an .mdl file and you have
specified the -s option, a .py? file is created in this directory. (The ? in the
extension .py? is replaced by the character that is used in your version of
Transformer.)

The default path is the current working directory.
Server Transformer Guide 39

Chapter 4: Manage the Server Transformer Environment
File

FilenameVariables=FALSE

Determines whether rsserver parses environment variables and how it
parses them.

If FilenameVariables is set to TRUE, rsserver looks for and removes
names in the file name and directory name strings that are marked with
a dollar sign ($), for example, $VARIABLE_NAME or
${VARIABLE_NAME}. If such a name is defined in the environment,
rsserver replaces it with the value from the environment.

If the value is the default FALSE, rsserver doesn’t parse the variables.

Rules for Environment Variables Entries
The following rules are observed for environment variable entries:

• Each environment variable must be preceded by a dollar character
($). Optional braces ({}) may enclose the environment variable name.

• The environment variable must be alphanumeric (ASCII) and may
contain an underscore (_).

• The variable must already be defined at the time the string is used.

• The special characters $, {, or } may appear in a file name or directory
string if they are preceded by the escape character (\). The backslash
is removed by Transformer before the string is used, for example, a
pair of backslash characters (\\) is replaced by one backslash.

• Variable substitution is not performed on the values of environment
variables.

Example 1

If .trnsfrmr.rc contains the following lines, rsserver looks for source data
files in the subdirectory called data under your home directory.
FilenameVariables=true
DataSourceDirectory=$HOME/data
40 Server Transformer Guide

Chapter 4: Manage the Server Transformer Environment
Example 2

MONTH is a variable in a predefined source data file. This variable is to
be included in the model and uploaded to the server for processing.

In the Server Data File box on the Query property sheet, type the
following:
${MONTH}data.asc

On the host system, define the environment variables FilenameVariables
and MONTH:
MONTH=March ; export MONTH
FilenameVariables=true ; export FilenameVariables

The rsserver progam uses the data file called Marchdata.asc when it
generates categories or creates PowerCubes.

OpenFilesLimit=0

Sets the maximum permitted number of concurrently open files.

The default value is 0, which is the system-specified limit of open file
descriptors, typically 60 files on HP-UX and 64 files on Sun Solaris.

The maximum is the hard limit value that the system administrator
establishes for your system. This is typically 1024 files.

Values greater than 0 and less than 15 become 15.

This preference is ignored on IBM AIX, SINIX, and Digital UNIX.

Note: The system setting MaxUser also imposes a limit on the number of
files rsserver can open. You may need to increase this value, since it
determines the number of open files allowed for any process.

Log File

LogFileDirectory=<path>

Specifies where rsserver creates the log file.

The default is the current working directory.

LogFileName=<path>

Specifies a file name if you want messages written to a file, rather than
displayed on the screen. The file name can include the full path.

The default is the standard output stream.

LogFileAppend=FALSE

Specifies that the rsserver log file overwritten for each new model or
cube. A value of TRUE appends the new log data to the existing log file.
Server Transformer Guide 41

Chapter 4: Manage the Server Transformer Environment
LogDetailLevel=4

Specifies the types of messages that are written to the log file. Choose
from 0 through 4:

• 0 suppresses logging

• 1 includes severe errors only

• 2 includes severe errors and errors

• 3 includes severe errors, errors, and warnings

• 4 includes severe errors, errors, warnings, and informational
messages (default)

You can use the log file to check the status of PowerCube creation. The
progress of a PowerCube update is indicated by statements in the file,
each containing the following fields:

• date and time (24-hour clock) at which the message was issued

• the message severity

• the message text

The text of each message includes information about processing and
timing. Messages marked Timing are especially useful to analyze as a
series of processing events. You can do this by importing the log file into
a spreadsheet application as a tab and comma delimited file. Since
messages containing timing information are formatted with a comma (,),
this will produce another column in the spreadsheet. You can then filter
on this column to analyze just the Timing messages. For example, in
Excel, select the third column and use the AutoFilter command.

You can also use the -r option of the rsserver command to control the
types of messages generated.

For information about this option, see "-r log_level" on page 57.

Warning

IncUpdateWarnings=TRUE

Issues warnings when an event is going to take place that will make an
incrementally updated cube invalid, for example, deleting a category.

The default value of TRUE means that warnings are issued; FALSE
disables warnings.

ChildRatioThreshold=35

Issues a warning if the number of child categories for any parent
category exceeds the specified value.

Valid values are 1 through 16384. The default is 35.
42 Server Transformer Guide

Chapter 4: Manage the Server Transformer Environment
Output

MaxTransactionNum=500000

Sets how often a checkpoint is written during cube creation. This is
defined as the number of records written to a cube before a new
checkpoint is created.

If your queries are constructed from a database, this value shouldn’t
exceed the size of your database rollback journal.

The default is 500000.

Available Memory

PPDS_READ_MEMORY=16000

Sets the amount of memory, in kilobytes, that is allocated when loading
server PowerCubes.

The default value is 16000. A value of 0 means use the default. The
minimum value is 100. If you specify a value of less than 100, the
minimum value is used.

PPDS_WRITE_MEMORY=32000

Sets the amount of memory, in kilobytes, that is allocated when writing
or updating server PowerCubes.

The default value is 32000. A value of 0 means use the default. The
minimum value is 100. If you specify a value of less than 100, the
minimum value is used.

PPDS_FLUSH=500

Sets the percentage of memory that is released whenever the cache is
full. The least recently used records are selected. The value is specified
in a .01% scale, for example, 500 is interpreted as 5%.

The default value is 500. A value of 5000 or more (>50%) is
automatically changed to 50%. A value of 99 or less (<1%) is changed to
1%.

Note: Memory preferences can only be set as environment variables.
Server Transformer Guide 43

Chapter 4: Manage the Server Transformer Environment
Query Attributes

DecimalPoint=.

Specifies the character used as a decimal point in a query. The default is
a period (.).

DefaultSeparator=,

Specifies the field delimiter in a delimited-text data file. The default is a
comma (,).

ThousandSeparator=,

Specifies the character used as a thousands separator in a query. The
default is a comma (,).

CenturyBreak=20

Specifies the cut-off date that determines whether the two-digit year
(YY) in a six-digit date is a 20th or 21st century date. Transformer
interprets values below the cut-off as 21st century dates and values at or
above the cut-off as 20th century dates.

The default is 20. Transformer treats 00 to 19 as 21st century dates and
20 to 99 as 20th century dates. You only need to change the default if
your source data includes dates from 1900 to 1919. For example, setting
CenturyBreak=18 means that the values 00 to 17 are interpreted as 2000
to 2017 and the values 18 to 99 are interpreted as 1918 to 1999.

Communication

PowerGridBlockSize=16384

Specifies the size of block, in bytes, used to send information back and
forth between Client Transformer and server Transformer.

The minimum block size is 1000. If you specify a smaller block size,
1000 is used.

The maximum block size is 32000. If you specify a larger block size,
32000 is used.

A larger block size speeds the transfer of newly-generated categories
from a server model to a client model. If too large a block size is used, a
message indicating memory allocation failure appears in the Client
Transformer window during client-server communications. To resolve
this problem, make more virtual memory available in the client or
reduce the block size on the server.
44 Server Transformer Guide

Chapter 4: Manage the Server Transformer Environment
ServerWaitTimeOut=10

When multiplied by ServerWaitPeriods, determines the maximum length
of time rsserver remains idle before shutting down.

If the network is very busy, or if you set long delays between
commands, you may want to adjust ServerWaitTimeOut and
ServerWaitPeriods to reduce time-outs. A value of -1 causes rsserver to
wait indefinitely.

Valid values are -1 through 32767 seconds. The default is 10 seconds.

ServerWaitPeriods=30

See the previous discussion for ServerWaitTimeOut.

Valid values are 0 through 32767 seconds. The default is 30 seconds.

ServerAnimateTimeOut=3

Determines how long rsserver waits for a response to messages that it
sends to Client Transformer. These messages appear in the status
window that Client Transformer displays to indicate that rsserver is
working on a command. When the time expires, rsserver disconnects
from the client.

If the network is very busy, you may want to increase this value to
reduce the number of disconnects; however, doing so may adversely
affect throughput if client and server are usually slow to respond.

Valid values are 1 through 32767 seconds. The default is 3 seconds.

Tip: You don’t need to stay attached to the server to monitor its activity.
Use the Server Status command in the Server menu in Client Transformer
to reconnect and reopen the status window as needed.

ServerSyncTimeOut=10

Determines how long rsserver waits for a response from Transformer
after sending model information. When the time expires, rsserver shuts
down. A value of -1 causes rsserver to wait indefinitely.

Valid values are -1 through 32767 seconds. The default is 10 seconds.

Date Format

LunarFiscalLabeling=TRUE

Determines whether users will be able to view dates in a cube in
PowerPlay in lunar year format.

The default value of TRUE indicates that the dates will be displayed in
this format. A value of FALSE indicates that dates will be displayed in
calendar year format.
Server Transformer Guide 45

Chapter 4: Manage the Server Transformer Environment
Environment Variables
Three types of environment variables affect this product:

• PowerPlay Administrator Server

• RDBMS

• shared library

These variables are listed in the following tables.

PowerPlay Administrator Server Environment Variables
Here are the critical environment variables used by PowerPlay
Administrator Server.

Environment Variable Description

COGNLSTAB Points to the Cognos NLS settings table.

Default: $PYA_USR/etc/coglangtab

COGNOS Sets the installation directory for Cognos
products. This environment variable is used
only by the installation program.

Default: /usr/cognos

DMDBINI Points to the location of Cognos database
management initialization files.

Default: $PYA_USR/etc

PYA_LIBRARY Identifies the location of shared libraries
used at execution time.

Default: $PYA_USR/lib

PYA_LOCATION Identifies the location of the directory
containing the executable rsserver and the
shell script rsserver.sh.

Default: $PYA_USR/bin

PYA_USR Identifies the installation directory for server
Transformer.

Default: /usr/cognos/pya60# *

SRVCMSGS Identifies the message file used by the
Cognos services layer and the PowerPlay
Data Services message catalog
(ppdsmsg.cat).

Default: $PYA_USR/msg/english/
srvcmsgs.msg
46 Server Transformer Guide

Chapter 4: Manage the Server Transformer Environment
*Note: # is the build number, and can be up to three digits (for
example, 113).

RDBMS Environment Variables
If your application uses a relational database, you must set the RDBMS
environment values before sourcing the setpya.csh or setpya.sh files,
since the settings of other variables depend on these database variables.

If you are launching server Transformer from Client Transformer, you
must also provide certain database software definitions for server
Transformer.

For information about these definitions, see "Use Client-Server
Transformer with Relational Databases" on page 49.

LANG Points to the locale for NLS settings. The
locale is set by the system and is a system
wide default.

PPDS_SYBASE_PACKET_
SIZE

Sets the value for the network packet size
that PowerPlay Data Services is to use when
opening a connection to a Sybase database.

Default: 2048

Note: The typical setting for Sybase 11.x is
4096. The minimum setting is 512.

Environment Variable Description
Server Transformer Guide 47

Chapter 4: Manage the Server Transformer Environment
Note that the values in this table are only examples. Contact your
database or network administrator for the correct values for your system.

RDBMS Environment Variables

Oracle ORACLE_HOME

Defines the top level directory where the Oracle client
software (or the entire database install) resides.

Example: /mount/app/oracle/product/7.3.3

TNS_ADMIN

Defines the directory where the Oracle file tnsnames.ora
is found. This file enables calls to the Oracle database to
determine which server to connect to.

Example: $ORACLE.HOME/network/admin

Sybase SYBASE

Defines the top level directory where the Sybase client
software (or entire database intall) resides.

Example: /sybase

DSQUERY

Defines the default Sybase server to connect to.

Example: /TEST1

Informix INFORMIXDIR

Defines the top level directory where the Informix client
software (or entire database intall) resides.

Example: /usr/informix

INFORMIXSERVER

Defines the default Informix server to connect to. Note
that Server Transformer can write an RDBMS cube to an
Informix server even if the server has not been defined
by this variable.

One model cannot have queries from two different
Informix servers.

Example: coral

DB2 DB2DIR

Defines the top level directory where the DB2 client
software resides.

Example: /usr/db2
48 Server Transformer Guide

Chapter 4: Manage the Server Transformer Environment
Shared Library Environment Variables
To run rsserver, the UNIX loader typically requires the library path
environment variable to specify the locations of the Cognos shared
libraries, PYA_LIBRARY, and, if necessary, the RDBMS shared libraries.
The library path environment variable is defined in the following table.

Transformer on SNI UNIX doesn’t use shared libraries and, therefore,
does not require the LD_LIBRARY_PATH environment variable.

The Cognos scripts setpya.sh and setpya.csh, which reside in
PYA_LOCATION, set the library path environment variable to include
PYA_LIBRARY as well as any relational database library they require
such as $SYBASE/lib, $ORACLE_HOME, or both.

Use Client-Server Transformer with Relational Databases
The program rsserver requires definitions for a few UNIX environment
variables. This information is needed whether you start rsserver from the
shell command line or from Client Transformer via PowerGrid.

The scripts setpya.sh or setpya.csh define most of these. However, if
your application uses a relational database, the database software also
requires some definitions. If you don't provide them, Transformer won't
be able to access the database.

An interactive login normally defines the RDBMS variables in a login
script, without user interaction. Since there is no login when you launch
rsserver from Client Transformer, you must define the symbols that the
Oracle client library or the Sybase or Informix database management
libraries need to access the remote database. One way to do this is to
define the symbols near the top of script powergrid/tcpip/netbin/
rsserver.sh, before the script runs setpya.sh.

Operating System Environment Variable

Digital UNIX LD_LIBRARY_PATH

Sun Solaris LD_LIBRARY_PATH

IBM AIX LIB_PATH

HP-UX SHLIB_PATH
Server Transformer Guide 49

Chapter 4: Manage the Server Transformer Environment
The following example shows how this might be done for the Oracle
client library. Note that the variables used here are only examples. You
must specify the directories for your site. In addition, Sybase and
Informix database management libraries require their own environment
variables.
ORACLE_HOME=/isv/oracle/7.3 ; export ORACLE_HOME
TNS_ADMIN=$ORACLE_HOME/network/admin ; export TNS_ADMIN
LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:${ORACLE_HOME}/lib
export LD_LIBRARY_PATH

The above example might be suitable for a system where all users access
a single database, in this case Oracle, and where they all use the same
tnsnames.ora file. To provide more flexibility, you could add the
following commands to rsserver.sh just above the point where it runs
setpya.sh.
#Lets you define environment variables, for example, those
#required for rsserver as an RDBMS client. This permits you to
#customize the environment in the manner of Bourne shell (sh). You
#may comment out these commands if the initialization scripts are
#not required for your site.
if [-r /etc/profile] ; then . /etc/profile ; fi
if [-r ./.profile] ; then . ./.profile ; fi
50 Server Transformer Guide

5
Chapter 5: Run Server
Transformer from the Command
Line

This chapter describes the rsserver program and its syntax.

The topics covered are

✔ Run rsserver from the Command Line
✔ Syntax for rsserver

✔ Command-line Options List
✔ Use the Command-line Options
✔ Examples

Run rsserver from the Command Line
In most cases, Client Transformer starts server Transformer (rsserver) by
means of PowerGrid. However, you can also run rsserver from the
command line if you want to set up a production environment on a
server to process source data and create PowerCubes.

When you run rsserver from the command line, you use command-line
options to

• specify the server-based model that is to be created or updated

• specify processing information

Note: The man page for the rsserver command-line options is in
pya60xxx/man/english/cat1, where x is the PowerPlay build number.
The number may be one to three digits.
Server Transformer Guide 51

Chapter 5: Run Server Transformer from the Command Line
Syntax for rsserver
The syntax for rsserver can be either of the following:

• rsserver options model_file

• rsserver model_file options

where

• rsserver is the executable name.

• options are the command-line entries that provide processing
information for rsserver. The options are case sensitive. You must
supply at least one option, but you can include more than one.

For information about command-line options, see "Command-line
Options List" on page 52.

• model_file is the .py? or .mdl file that rsserver is to process. You must
either supply a file name or use the “-” option to have rsserver accept
input from the standard input stream.

Command-line Options List
This table lists the command-line options. See the sections following the
table for details:

Meaning Option

generate categories and create cubes -c

override user preference setting -D preference_var=setting

update model, but not data -e

set user-defined preference file -F preference_file

open specified .py? model and restart
failed process from beginning

-i py_model_file

specify database signon -k signon=userid/password

open specified .mdl file or accept Model
Definition Language (MDL) statements

-m mdl_file

suppress banner -nologo

open specified .py? file -p py_model_file

specify log level detail -r log_level

save model -s

set current period -t category_code

get partition status -u powercube_name
52 Server Transformer Guide

Chapter 5: Run Server Transformer from the Command Line
For information about the Model Definition Language, see the
Transformer MDL Reference.

Use the Command-line Options
-c

Generates categories and creates cubes after rsserver loads a model file,
interprets MDL statements, or both.

You must use this option with the -p, -m, or -i option.

-D preference_var=setting

Overrides a user preference setting. If you specify the -D option after the
-F option, the -D setting overrides the -F file, and vice versa.

For information about user preferences, see "Control Server Transformer
with Preferences and Environment Variables" on page 35.

-e

Updates all the PowerCube metadata that is defined in the model, but
does not update the data. The metadata consists of object names, labels,
short names, descriptions, drill-through reports, and user classes.

You cannot use this option with -c.

-F preference_file

Specifies the user-defined preference file that rsserver is to use. The
name may include a directory path. If you specify the -F option after the
-D option, the -F file overrides the -D setting and vice versa.

-i py_model_file

Restarts a failed process when used with another option, such as -c.
Unlike the -p option, -i ignores the .qy? checkpoint file and restarts
processing from the beginning. The model file is saved after processing.

Use this option with a binary model file (.py?). You cannot use it with
the -s option.

specify number of records for test cube -v data_subset_number

expect input from the standard input
stream

- (dash)

Meaning Option
Server Transformer Guide 53

Chapter 5: Run Server Transformer from the Command Line
-k signon=userid/password

Specifies one or more signons, each consisting of a user ID and password
that are needed to access databases.

The signon name cannot contain the ASCII character =.

The user ID cannot contain the ASCII character /.

Signons are required for the following, unless they are embedded in the
model:

• source data accessed via Impromptu Query Definition (.iqd) queries

• PowerCubes stored in relational databases

When you insert an .iqd query into your model, Transformer
automatically creates a signon and associates it with the query. The
signon name that Transformer assigns is created from the logical
database name in the Cognos.ini file. This logical database name
matches the logical database name defined in Impromptu. You can view
these signons in Client Transformer, but you can’t modify them. Multiple
.iqd queries can use the same signon object.

When you define a signon in a model, the user ID and password are
embedded in the model. Passwords are encrypted and saved to .py?
files, but they are only saved to .mdl files if Transformer generates verb
MDL. When you process an .mdl file, the -k option enables you to
specify the user IDs and passwords that you require to access databases.
These signons must match the signons that you defined in your
Transformer model.

Example

Transformer reads your data source for the server sales model
Xyzsales.mdl from an Oracle database via an .iqd file. You have created
a signon called sal_log. This signon includes the Oracle user ID corpadm
and the password my_pass. Because the PowerCube is stored in an
Oracle database, you have also defined a signon called sal_cube with
the user ID corpis and the password bld_cube. To process the .mdl file
for sales model Xyzsales.mdl, you enter the following command:
rsserver -c -s -m Xyzsales.mdl -ksal_log=corpadm/my_pass
-ksal_cube=corpis/bld_cube
54 Server Transformer Guide

Chapter 5: Run Server Transformer from the Command Line
Secure User IDs and Passwords

If you use the -k option to pass user IDs and passwords to rsserver,
there is a possibility that security breaches may occur. For example, your
security can be violated if other users can view the details of your
rsserver process via the UNIX ps command or by reading the log file.

To prevent security problems, you have three options:

• store the -k option with the user ID and password information in a
file in a secure directory and call the file from the rsserver command
line

• embed the user ID (or the user ID and password) in the MDL model
file

• create an MDL script file

For the first option, you create a file called, for example, Sal_id.txt, and
store it in a secure directory. The file contains the -k option with the user
IDs corpadm and corpis and the passwords my_pass and bld_cube.
-ksal_log=corpadm/my_pass -ksal_cube=corpis/bld_cube

You call the Sal_id.txt file from rsserver as follows:
rsserver -c -s -m Xyzsales.mdl `cat Sal_id.txt`

For the second option, you add MDL statements to the end of the .mdl
model file. The statements update the signon information needed to log
on to the database. To embed both the user ID and password, enter the
following statement:
SignonUpdate “sal_cube” PromptForPassword False UserID “corpis”
Password “bld_cube”

To embed the user ID only, enter:
SignonUpdate “sal_cube” PromptForPassword True UserID “corpis”

You can then run rsserver with the -m option, specifying the modified
.mdl file without the -k option.

For the third option, you create a secured temporary MDL script on the
server. The MDL script updates the model signon, as shown in this
example:
OpenPY “Xyzsales.py?”
SignonUpdate “sal_cube” PromptForPassword False Password
“bld_cube”
SavePY “Xyzsales.py?”

To use this MDL script, run rsserver with the -m option, specifying the
name of the .mdl file.
Server Transformer Guide 55

Chapter 5: Run Server Transformer from the Command Line
-m mdl_file

Specifies an ASCII model or script file (.mdl) to interpret.

If you use multiple occurrences of -m, .mdl files are processed in the
order of their occurrence. In addition, you can use - as an argument to
accept MDL verb statements from the standard input stream.

To save a file in .mdl format, use -m and the MDL verb SaveMDL, as
shown in the following examples:

• Create a separate file, Savemdl.mdl, containing the line
SaveMDL “Xyznew.mdl”

Then, using the ASCII model file Xyzsales.mdl, enter
rsserver -p Xyzsales.mdl -m Savemdl.mdl

• Create a separate script file Savemdl.mdl, containing the line
SaveMDL “Xyznew.mdl”

Then, using the binary model file, Xyzsales.py?, enter
rsserver -m Xyzsales.py? -m Savemdl.mdl

• Input SaveMDL from the standard input stream. To do this, first enter
the following line on the command line:
rsserver -p Xyzsales.py? -m-

Then, from the keyboard, enter
SaveMDL “Savemdl.mdl”

Once you have completed your entries to rsserver, enter the UNIX
end-of-file command (Ctrl-D) and rsserver will save the .py? file in
.mdl format.

-nologo

Suppresses the introductory banner.

-p py_model_file

Processes the model.

The rsserver program loads the binary model file (.py?) and starts
processing either from the last checkpoint saved in the checkpoint file
(.qy?), if this file exists, or from the beginning of the .py? file. The
program saves changes at termination.

Do not use the -p option with the -s option.

For information about how to restart a failed job from the beginning, see
"-i py_model_file" on page 53. For information about how to save a
model, see "-s" on page 57.
56 Server Transformer Guide

Chapter 5: Run Server Transformer from the Command Line
-r log_level

Sets the types of messages that are written to the log file, where log_level
is a digit from 0 through 4. Each level includes the errors and messages
for all higher levels.

• 0 suppresses logging

• 1 includes only severe errors and above

• 2 includes error messages and above

• 3 includes warning messages and above

• 4 includes informational messages and above (default)

-s

Saves changes to your model upon exit. Changes are saved in a binary
model file (.py?).

Do not use this option with -i or -p.

For information about -i, see "-i py_model_file" on page 53. For
information about -p, see "-p py_model_file" on page 56.

-t category_code

Sets the current period in all manual time dimensions to the date
associated with the category. Category_code is the category code of a
category in a time dimension.

This option applies only to dimensions that are not set to Automatically
Set Current Period in the Time tab (Dimension property sheet) in Client
Transformer.

Enclose the argument in quotation marks if it contains a tab or space
character.

-u powercube_name

Writes PowerCube partition information to the log file.

A PowerCube must exist before its partition status can be reported.

To obtain partition information for cubes in a cube group, you must
specify the name of an individual PowerCube, not the cube group name.
Server Transformer Guide 57

Chapter 5: Run Server Transformer from the Command Line
-v data_subset_number

Specifies how many source data records rsserver should use to create a
test PowerCube. If you have a large data source file, this option enables
you to do a test run on a limited number of records before processing
the entire file.

If the number of records you specify is greater than the total number of
records in the file, rsserver treats the process as a normal run, not a test,
and uses the whole file.

Use this option with the -m or - p option.

- (dash)

Use this option alone when you want rsserver to accept input from the
standard input stream. All options to the right of this option are ignored.

Examples

Save Changes to a Model File
This command starts rsserver, parses an ASCII model file (.mdl), and saves
the changes in a binary model file (.py?):
rsserver -m go_sales.mdl -s go_sales.py?

Generate Categories and Create PowerCubes
In both examples, the commands start rsserver and build the cubes that
the model specifies. The .mdl file is a full model definition.

• This command processes a binary model file (.py?) called
go_sales.py?:
rsserver -c -p go_sales.py?

• This command processes an MDL text file called go-sales.mdl:
rsserver -c -m go_sales.mdl

Choose a Preference File
This command tells Transformer to parse an .mdl file using the
preference file mypref.prf:
rsserver -F mypref.prf -m go_sales.mdl
58 Server Transformer Guide

Chapter 5: Run Server Transformer from the Command Line
Override Preference File Settings
This command overrides the default value at which rsserver issues
warnings that a category has too many descendants:
rsserver -D ChildRatioThreshold=25

Create a Test PowerCube from a Subset of Records
This command processes 525 records from binary model file Xyzsales.py?,
generates categories, and creates a PowerCube.
rsserver -c -p Xyzsales.py? -v 525

Combine Options
This command starts rsserver and

• opens the binary model file go_sales_jan.py?

• processes the commands in the .mdl file monthly_update.mdl

• obtains preferences from a file named trnsfrm_prd.prf

• saves the model
rsserver -p go_sales_jan.py? -m monthly_update.mdl -F
trnsfrm_prd.prf
Server Transformer Guide 59

6
Chapter 6: Production and
Maintenance

This chapter describes production and maintenance on the server.

The topics covered are

✔ Manage Production in a Client-Server Environment
✔ Client-Server Production Issues
✔ Schedule Server Production
✔ Incremental Updates
✔ Use Client Transformer to Check rsserver Status
✔ Check Job Completion
✔ Use the Log File
✔ Check PowerCube Status
✔ Restart a Failed Process from a Checkpoint
✔ Restart a Failed Process from the Beginning

Manage Production in a Client-Server
Environment

Note: For information about PowerPlay production in general, see the
PowerPlay Administrator’s Guide.

There are several ways to manage production in a client-server
environment:

• Make changes in Client Transformer and update your models and
PowerCubes on the server. Since client and server models are
synchronized whenever you connect to a server model from Client
Transformer, the models remain identical.

For information about synchronization, see "Synchronize Models" on
page 31.
Server Transformer Guide 61

Chapter 6: Production and Maintenance
• Shift production to server Transformer. Use a scheduling utility such
as cron, to process new data and build cubes on a regular basis. You
can also set up MDL scripts to define events that rsserver must
perform regularly.

• Use Client Transformer to develop local models and then save them
in .mdl format. Use ftp (or another file transfer mechanism) to copy
the files to the server, where you can use rsserver to process them
and create PowerCubes.

Note: You can transfer only local models that have been saved in
.mdl format. Model files saved in .py? format are not binary
compatible with model files on the server. (The ? in the extensions
.py? and .qy? are replaced by the character used in your version of
Transformer.)

If you use rsserver to create standard PowerCubes, your production
environment might include automatically mailing the PowerCubes to
their intended audiences. For example, you can set up a cron job that
creates a PowerCube and sends the PowerCube to its intended users.

Client-Server Production Issues
If you create large PowerCubes or large numbers of cubes, you are likely
to shift routine cube production from Client Transformer to server
Transformer. However, if you are updating a cube, the easiest way to do
it is to use a client model in Client Transformer, rather than a server
model in rsserver.

For example, it is easy to add a manual level to a dimension if you use
Client Transformer. To do the same thing on the server, you need to use
MDL to create the manual level, its categories, and the categories you
want to connect to the categories in the manual level. You need to know
MDL syntax as well as the objects in the model (such as the drill
categories and the parents of the categories or levels you are creating).

Also, you must use Client Transformer for updates if your model has
enabled Authenticator user classes.
62 Server Transformer Guide

Chapter 6: Production and Maintenance
Schedule Server Production
If you use UNIX scheduling commands, the UNIX at command, or a
crontab file, you can schedule batch jobs that run rsserver to create
PowerCubes.

For example, you have a model that is used to create 20 individual
PowerCubes and a PowerCube group consisting of 10 cubes. You can
supply scheduling information to enable and disable the creation of
specific cubes at specific times.

Incremental Updates
When you update PowerCubes incrementally, there are special
circumstances that you must consider. Most notably, if a PowerCube
update fails, there are cases when you should not attempt to repeat the
most recent incremental update.

For example, when processing fails, some records from the increment
may already have been written to the PowerCube. If you restart the
process, rsserver adds these records to the cube twice, which results in
inaccuracies in the PowerCube.

For information about how to avoid problems that result when a
PowerCube update fails, see Chapter 5 in the PowerPlay Administrator’s
Guide.

Sample PowerCube Creation Job
This example demonstrates the process required to set up a PowerCube
creation job:

• create an MDL script, which contains verb statements that create
specific PowerCubes.

• create a C shell script to start rsserver, which runs the MDL script.

• generate crontab entries to run the C shell script at certain times to
create the PowerCubes.

The sample model, called go_sales.py?, includes a PowerCube definition
for sales in the United States (Usa_sales) and a definition for sales in
Europe (Eur_sales).
Server Transformer Guide 63

Chapter 6: Production and Maintenance
Sample MDL Scripts

The MDL scripts that are called by the C shell scripts contain verb
statements that create specific PowerCubes.

The MDL script called usa_monthly_cube.mdl contains the statements
that open the model file, create the cube for USA sales, and save and
close the model file:
OpenPY “go_sales.py?”
CreateFromCubes OnServer “Usa_sales”
SavePY “go_sales.py?”

The MDL script called eur_weekly_cube.mdl contains the statements that
open the model file, create the cube for European sales, and save and
close the model file:
OpenPY “go_sales.py?”
CreateFromCubes OnServer “Eur_sales”
SavePY “go_sales.py?”

Sample C Shell Scripts

The C shell scripts start rsserver, which runs the MDL scripts. Use the
chmod command to set the shell script files to execute.

The C shell script called create_usa_cubes.csh is used to create the USA
sales cube:
#!/bin/csh
set rsserver environment
source $PYA_USR/setpya.csh
setenv LogFileName rsserver_usa_monthly.log
call rsserver
rsserver -musa_monthlyy_cube.mdl

The C shell script called create_eur_cubes.csh is used to create the
European sales cube. It is identical to the script used to create the USA
sales cube, except that the rsserver command in this case references the
MDL file eur_weekly_cube.mdl.

For information about rsserver command-line options, see Chapter 5 on
page 51.
64 Server Transformer Guide

Chapter 6: Production and Maintenance
Sample Crontab Files

The crontab file contains information about the job you want to run. Each
line in the file consists of six fields, separated by spaces or tabs. The first
five fields contain scheduling information (minute, 0-59; hour, 0-23; day
of the month, 1-31; month of the year, 1-12; day of the week, 0-6, 0 is
Sunday). The sixth field specifies the command to run.

To generate the PowerCube for USA sales on the 1 st and 15th of every
month and the European PowerCube every Monday, you must create two
crontab files to schedule these cube generation cycles.

To run the C shell script create_usa_cubes.csh on the 1 st and 15th of every
month, create a crontab file that has the following entries:
0 0 1,15 * * . .profile ; create_usa_cubes.csh

To run the C shell script, create_eur_cubes.csh file each Monday, create
a crontab file that has the following entries:
0 0 * * 1 . .profile ; create_eur_cubes.csh

Sample MDL Model Update
This example demonstrates how to use MDL scripts to split the generation
of categories and the creation of PowerCubes. The following MDL file
contains the verb statements that are required to generate categories for
the model go_sales.py?, without creating the cubes for that model.
OpenPY “go_sales.py?”
PopulateModel
SavePY “go_sales.py?”

If these statements are saved in a file called Gen_nat.mdl, you can process
them by running rsserver as follows:
rsserver -mGen_nat.mdl

Use Client Transformer to Check rsserver
Status

If you start rsserver from Client Transformer, you can monitor the server
activity from Client Transformer. Use the Server Status command in the
Server menu. The information is updated every few seconds.
Server Transformer Guide 65

Chapter 6: Production and Maintenance
Check Job Completion
When you use rsserver to create PowerCubes, either from Client
Transformer or the command line, you can check the status of the
PowerCube:

• On the server, view the contents of the log file, which contains
messages issued by rsserver.

• If you used a crontab file or scheduled the job with the UNIX at
command, check your email for a completion message. You can then
review the log file for any warnings or errors.

• If you submitted a cube creation job on the server from Client
Transformer, click the Server Status command in the Server menu to
check the current status of the PowerCube creation.

• In Client Transformer, click PowerCube Status from the Tools menu.

• Check the ModelSaveDirectory for a checkpoint file (.qy?). Because
rsserver automatically deletes checkpoint files when processing ends
successfully, a checkpoint file means that a suspended model exists.
Check the log file for errors associated with the processing of that
model.

• If you created a shell script that includes rsserver commands, you can
check the exit status of rsserver to detect operations that did not end
successfully. An exit status value of 0 indicates successful completion.
Any other value indicates an error.

Use the Log File
By default, all messages generated by rsserver are directed to the
standard output stream. You can direct them to a log file instead and
control the properties of that log file with preferences that you set in
your trnsfrmr.rc or .trnsfrmr.rc files.

For information about the log file, see "Log File" on page 41.

You can use log file error and warning messages to help you isolate
problems encountered as rsserver read the source data or wrote
information to the PowerCube.
66 Server Transformer Guide

Chapter 6: Production and Maintenance
Check PowerCube Status
When you use any of the following Server menu commands, Client
Transformer sends requests for processing to rsserver:

• Generate Server Categories

• Generate Categories from Selected Server Query

• Create Server PowerCubes command

• Create Selected Server PowerCube

• Update Server PowerCubes

• Update Selected Server PowerCubes

When the request is completed, you can review the current status of
PowerCubes that have been created or updated on the server.

Steps to Review Current Status of PowerCubes

1. In Client Transformer, open the client model associated with the
server model that was used to create the PowerCube.

2. From the Server menu, click Synchronize to connect to the server.
Type your server password when prompted.

3. From the Tools menu, click PowerCube Status.

If a cube is marked Invalid, you may want to reset the status to
Warning or OK and make the cube available for access anyway. If
the cube is set to Invalid because of an error, you must recreate it.

For incremental updates, you must identify and correct the problem,
restore the cube and its associated model from backup, and then
restart the update job.

4. If exceptions are indicated, read the log file.

For information about PowerCube status and actions to take in response
to a specific status, see Chapter 5 in the PowerPlay Administrator’s
Guide.
Server Transformer Guide 67

Chapter 6: Production and Maintenance
Restart a Failed Process from a Checkpoint
As rsserver processes data on the server, it maintains a checkpoint file
with the extension .qy?. When a PowerCube create or update fails,
rsserver can use the .qy? file to restart processing at the point of failure.

For example, you are running a quarterly model update with new data
and rsserver is unable to locate one of the source data files for one of
the queries in the model. As a result, the model update fails. Use the
checkpoint file to restart processing at the point of failure.

The following command tells server Transformer to restart .py? model file
processing.
rsserver -p go_sales.py?

If an associated .qy? file is found, it is used to restart the process.

Checkpoint and restart are most significant for PowerCube and
PowerCube group creation.

For information about checkpoint files, see Chapter 5 in the PowerPlay
Administrator’s Guide.

Restart a Failed Process from the Beginning
When rsserver builds PowerCubes, some conditions may prevent
processing from ending successfully. For example, if rsserver tries to
write a PowerCube to a database that is locked, an error occurs and
processing stops. In such a case, use rsserver to start the process from
the beginning.

The following command tells server Transformer to load the saved model
file go_sales.py?, but to ignore the last interrupted cube creation process
and any associated .qy? files:
rsserver -i go_sales.py?

For more information about checkpoint files, see Chapter 5 in the
PowerPlay Administrator’s Guide.

Note: If an incremental update fails, follow special steps to ensure that
no data is added to the cube more than once.

For information about how to handle incremental update failures, see
Chapter 5 in the PowerPlay Administrator’s Guide.
68 Server Transformer Guide

A
Appendix A: Configuration
Checklist for a
Client-Server Environment

This appendix lists the steps to follow when you install and set up PowerPlay
in a client-server environment.

The topics covered are

✔ Set Up a Client-Server Environment
✔ Install PowerPlay
✔ Prepare Client Transformer
✔ Prepare Server Transformer

Set Up a Client-Server Environment
To set up a client-server environment in PowerPlay

1. Install PowerPlay locally on your computer and on the server

2. Prepare Client Transformer, by creating a prototype, testing it, and
changing settings from client to server

3. Prepare server Transformer, by setting preferences and defining
server Transformer and database-specific environment variables

Install PowerPlay
1. Install PowerPlay from the CD or LAN on your personal computer.

For more information, see the PowerPlay Installation Guide.

2. Install PowerPlay and PowerGrid on the server. For more
information, see the Administrator Server Installation Guide.
Server Transformer Guide 69

Appendix A: Configuration Checklist for a Client-Server Environment
Prepare Client Transformer
Steps to prepare the server for server Transformer

1. Start Client Transformer.

2. Build the model.

3. Set up the queries.

4. Create the PowerCube.

5. Make sure that the model is working as expected.

At this point, you must change certain properties before you can
upload the model to the server.

6. In the Source tab of the Query property sheet, change the Query
Location to Server. If you are using multiple queries, change the
location for the remaining queries, as required.

7. In the Processing tab of the PowerCube property sheet, change the
Processed location to On the Server.

8. In the Output tab of the PowerCube property sheet, type the
PowerCube file name.

If you are storing the cube in a database, complete steps 9 to 11;
otherwise, skip to step 12.

9. In the Output tab of the PowerCube property sheet, click the
database type in the Database Type box.

Note: If the Database Type box does not show the database you
need, check the following section in the Cognos.ini file. If your
database entry is set to 0, remove the 0:
[PowerPlay Server List]
Oracle=
Sybase=
MS SQL Server=
Informix=

Your list may contain other entries, depending on the version of
PowerPlay you are using.

10. In the boxes below Database Type, type the remaining database
connection information.
70 Server Transformer Guide

Appendix A: Configuration Checklist for a Client-Server Environment
11. When the database signon appears in the Signons list, click the
signon, and then type your user ID and password.

12. In the Server tab of the Model Properties item on the File menu,
type the model path and the connection information.

13. Confirm the PowerGrid network daemon communications port
number. The port number on the client should match the port
number on the server where you start the network daemon. The
default is 1526, but check with your network administrator.

14. From the Maintenance submenu of the Server menu, click Restore
Server Model from Client.

For more information about building a model, setting up queries, and
creating PowerCubes, and about property sheets and menus, refer to the
Transformer online Help.

Prepare Server Transformer
Steps to Prepare server Transformer

On the server, before you run server Transformer:

1. Set the required preferences and environment variables for server
Transformer.

2. Set the database-specific environment variables.

For information about preferences and environment variables, see
"Preference Settings" on page 38, "Environment Variables" on page 46,
and "RDBMS Environment Variables" on page 47.

3. Run the required database script to set up the tables needed for the
database cube.

For For information about database scripts, see the Transformer online Help.

Once you have performed the steps in this checklist, your client-server
environment is set up and you can run server Transformer.
Server Transformer Guide 71

Index

Symbols
-(dash), 58
.iqd queries, 25
.trnsfrmr.rc, 36

—C—
-c, 53
categories

generating on the server, 30
CenturyBreak, 44
checking PowerCube status, 67
ChildRatioThreshold, 42
Client Transformer

checking server Transformer status, 65
Server menu, 10, 26

client-server
Client Transformer settings, 26
communications, 10, 14, 17, 19
configuring, 69
connecting, 19
environment, 69
managing production, 61
production issues, 62
setting up, 69
setting up communications, 19

Cognos.ini
file, 11
shell scripts, 21

command-line options, 35, 51, 52–58
- (dash), 58
-c, 53
-D, 53
-e, 53
-F, 53
-i, 53
-k, 54
-m, 56
-nologo, 56
-p, 56
-r, 57
-s, 57
-t, 57
-u, 57
-v, 58

commands, Server menu, 10
communications

client-server, 10, 17
preferences, 44

components, Transformer Administrator Server,
10

connecting
NetInfo, 19
PowerGrid, 19
testing using NetInfo, 20

creating server PowerCubes, 30
CubeSaveDirectory, 39
cycle numbers, 31
Server Transformer Guide 73

Index
—D—
-D, 53
data sources

local, 28
server, 24, 28

databases
Cognos.ini file, 11
creating PowerCubes in, 27
storing PowerCubes in, 11
storing server PowerCubes in, 12
supported, 11

DataSourceDirectory, 39
DataWorkDirectory, 39
date format

preferences, 45
DecimalPoint, 44
DefaultSeparator, 44
directory preferences, 39

—E—
-e, 53
environment

settings, 36
settings, search order, 36
variables, 35
variables, database, 48
variables, memory, 43
variables, rules, 40

errors, 66

—F—
-F, 53
failed process, recovering from, 68
file preferences, 40
FilenameVariables, 40

—I—
-i, 53
Impromptu

queries, 25
signons, 54

incremental updates, 63
IncUpdateWarnings, 42
Informix environment variables, 48
IQD, 25

—J—
job completion status, 66

—K—
-k, 54

—L—
log file

PowerCube creation errors, 66
PowerCube status, 66
preferences, 41
server messages, 66

LogDetailLevel, 42
LogFileAppend, 41
LogFileDirectory, 41
LogFileName, 41
LunarFiscalLabeling, 45

—M—
-m, 56
managing production, 61
MaxTransactionNum, 43
MDL, building models, 30
memory preferences

flush, 43
read, 43
write, 43

models
creating server, 29
cycle numbers, 31
prototyping, 24, 27
server, 13, 26
synchronizing, 31, 32
timestamps, 31
updating, 32
using MDL, 30

ModelSaveDirectory, 39
ModelWorkDirectory, 39

—N—
NetInfo

adding a connection, 19
testing a connection, 20

-nologo, 56

—O—
OpenFilesLimit, 41
options, command-line, 52–58
Oracle environment variables, 48
Output preferences, 43
74 Server Transformer Guide

Index
—P—
-p, 56
passwords, 54
PowerCubes

checking status, 66
creating in databases, 27
creating on the server, 30
defining for server, 29
errors and recovery, 66
incremental updates, 63
processing errors, 66
prototyping models, 27
restarting a failed process, 68
server, 11, 13, 26
signons, 54
standard, 11
status, 67
status in log file, 66
storing in databases, 12
updating incrementally, 63

PowerGrid, 17
PowerGridBlockSize, 44
PPDS_FLUSH, 43
PPDS_READ_MEMORY, 43
PPDS_WRITE_MEMORY, 43
preferences, 35, 36

.trnsfrmr.rc, 36
CenturyBreak, 44
ChildRatioThreshold, 42
communication, 44
CubeSaveDirectory, 39
DataSourceDirectory, 39
DataWorkDirectory, 39
date format, 45
DecimalPoint, 44
DefaultSeparator, 44
directory, 39
file, 40
FilenameVariables, 40
flush memory, 43
IncUpdateWarnings, 42
list of categories, 38
log file, 41
LogDetailLevel, 42
LogFileAppend, 41
LogFileDirectory, 41
LogFileName, 41
LunarFiscalLabeling, 45
MaxTransactionNum, 43
ModelSaveDirectory, 39
ModelWorkDirectory, 39
OpenFilesLimit, 41
Output, 43

PowerGridBlockSize, 44
PPDS_FLUSH, 43
PPDS_READ_MEMORY, 43
PPDS_WRITE_MEMORY, 43
query attributes, 44
read memory, 43
rules, 37
search order, 36
ServerAnimateTimeOut, 45
ServerSyncTimeOut, 45
ServerWaitTimeOut, 45
ThousandSeparator, 44
trnsfrmr.rc, 36
warning, 42
write memory, 43

production
incremental updates, 63
issues, 62
managing, 61
scheduling, 63
server, 63

prototyping, 10
models, 24, 27
using Impromptu, 25

—Q—
queries

changing from local to server, 28
defining for the serve, 28
Impromptu, 25

query attributes preferences, 44

—R—
-r, 57
recovery, 66

from a failed job, 68
restarting a failed process, 68
rsserver.sh, 21

—S—
-s, 57
scheduling

batch jobs, 63
production, 63

security, 54
Server Transformer Guide 75

Index
server
checking PowerCube status, 67
creating models, 29
creating PowerCubes, 30
creating PowerCubes in databases, 27
data sources, 28
defining PowerCubes, 29
designing models and PowerCubes, 13
entering information in the Server menu, 28
generating categories on, 30
models, 13
monitoring activity, 65
PowerCube status, 67
storing databases in, 11

Server menu commands, 10
server queries, 28
server Transformer

checking status, 65
client-server production issues, 62
client-server set up, 69
client-server settings, 26
command-line options, 51, 52–58
command-line syntax, 52
creating PowerCubes, 30
data sources, 24
databases, 11
defining queries, 28
entering information in the Server menu, 28
environment settings, 35
features, 9
job completion status, 66
managing client-server production, 61
model settings, 26
PowerCube status, 66
PowerCubes, 11
prototyping models, 24
queries for prototyping, 24
running batch jobs, 63
security, 54
shell scripts, 21

ServerAnimateTimeOut, 45
ServerSyncTimeOut, 45
ServerWaitPeriods, 45
ServerWaitTimeOut, 45
settings

environment, 35, 36
shell scripts, 21
signons, 54
status

PowerCubes, 67
Sybase environment variables, 48

synchronizing, 10
automatic, 32
manual, 32
models, 31, 32

—T—
-t, 57
testing a connection using NetInfo, 20
ThousandSeparator, 44
timestamps, 31
Transformer

Administrator Server components, 10
client-server communications, 10, 14
prototyping models, 24
queries for prototyping, 24

trnsfrmr.rc, 36

—U—
-u, 57
UNIX

environment variables, 35
updating

incrementally, 63
models, 32

user IDs, 54

—V—
-v, 58

—W—
warning preferences, 42
76 Server Transformer Guide

	Server Transformer Guide
	Table of Contents
	Welcome
	Chapter 1: Overview of Server Transformer
	Why Use Server Transformer?
	Components of Server Transformer
	Communications
	Model Prototyping and Synchronization
	Server Menu Commands
	Server Configuration
	Run Server Transformer from the Command Line

	Server Transformer and Standard PowerCubes
	Server Transformer and Relational Databases
	Design Server Models and PowerCubes
	The Client-Server Communications Process

	Chapter 2: Set Up Client�Server Transformer Communications
	PowerGrid
	How PowerGrid Works

	Define a Client-Server Connection
	Add a Connection Using NetInfo
	Test a Connection Using NetInfo

	Server Transformer Shell Scripts

	Chapter 3: Create Server Models and PowerCubes
	Use Server Transformer on a Remote Computer
	Prototype a Model
	Set Up Queries for the Prototype
	Use Supported Data Sources for Server Models
	Use Impromptu to Set Up Queries

	Change Settings to Build Server Models and Create Server PowerCubes
	Enter Server Information
	Provide Server Query Definitions
	Change the PowerCube Definition to Server
	Create a Server Model
	Generate Categories on the Server
	Create Server PowerCubes
	Multiprocessing

	Synchronize Models
	Why is Synchronization Required?
	Automatic Synchronization
	Manual Synchronization
	Restore Model Files
	Automate Model Synchronization

	Chapter 4: Manage the Server Transformer Environment
	Control Server Transformer with Preferences and Environment Variables
	Where rsserver Obtains Settings
	How rsserver Uses Settings
	Rules for Preference File Entries
	Preference Settings
	Directory
	File
	Rules for Environment Variables Entries
	Log File
	Warning
	Output
	Available Memory
	Query Attributes
	Communication
	Date Format

	Environment Variables
	PowerPlay Administrator Server Environment Variables
	RDBMS Environment Variables
	Shared Library Environment Variables
	Use Client-Server Transformer with Relational Databases

	Chapter 5: Run Server Transformer from the Command Line
	Run rsserver from the Command Line
	Syntax for rsserver
	Command-line Options List
	Use the Command-line Options
	Examples
	Save Changes to a Model File
	Generate Categories and Create PowerCubes
	Choose a Preference File
	Override Preference File Settings
	Create a Test PowerCube from a Subset of Records
	Combine Options

	Chapter 6: Production and Maintenance
	Manage Production in a Client-Server Environment
	Client-Server Production Issues
	Schedule Server Production
	Incremental Updates
	Sample PowerCube Creation Job
	Sample MDL Model Update

	Use Client Transformer to Check rsserver Status
	Check Job Completion
	Use the Log File
	Check PowerCube Status
	Restart a Failed Process from a Checkpoint
	Restart a Failed Process from the Beginning

	Appendix A: Configuration Checklist for a Client-Server�Environment
	Set Up a Client-Server Environment
	Install PowerPlay
	Prepare Client Transformer
	Prepare Server Transformer

	Index

